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ABSTRACT 
 

Semi-flexible polymer networks generate a diverse family of structures. The network 

generating behaviors of specific semi-flexible biological filaments are well known (i.e. F-actin, 

microtubules, DNA etc.), however recent developments in tunable synthetic filaments extend the 

range of accessible structures. A similarly tunable model was developed using the molecular 

dynamics platform NAMD to provide a guide for generating synthetic filament networks. 

Structural characteristics of simulated networks may be quantitatively examined using 

connectivity analysis, radial pair distribution functions and scaling analysis. These methods 

provide a basis to calculate morphological properties, including mesh size, packing order, 

network connectivity, avg. cluster size, filaments per bundle, and space-filling dimensionality. 

An analytic toolset for describing the structure of filament networks is thus provided by detailing 

these methods.  

 

 

INTRODUCTION 

 

Semi-flexible polymer filaments are important to biological systems. For example, the 

cellular cytoskeleton is formed from F-actin, microtubule, and intermediate filaments cross-

linked to form a network [1–3]. Recent experimental work has achieved the synthesis of semi-

flexible polymers that can model the properties of these biological materials, but also have 

tunable properties [4]. This opens a new path for generating tunable hydrogels, applications for 

which have been discussed for drug delivery [5–7], tissue engineering [8], and mesoscale 

templating [2]. Such applications will benefit from the unique structure and rheology of these 

light yet rigid gels [9]. 

A diverse family of network-based materials can be generated from semi-flexible polymers, 

with structures distinct from those generated by flexible Gaussian polymers. In particular semi-

flexible filaments have been demonstrated to generate branching networks of bundles – a 

structure unique to such systems [2,3,4]. Computational models for semi-flexible biological 

filaments (i.e. F-actin [10,11]) have been recently reported and agree well with experimental 

results.  

While the basic solution behavior of biological filaments is fairly well known, a broader 

understanding of their self-assembly properties is needed to provide a generalized model that 

supports development of tunable synthetic polymers.  Particularly in the formation of out-of-

equilibrium structures such as the network of bundles. Our group’s recent work has provided 

such a model describing semi-flexible polymer network formation [12] with generalized 

parameters allowing a range of structures to be generated (see Figure 1). In this paper we 
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describe a set of analytical techniques to quantitatively characterize the filamentous structures 

generated by coarse grained molecular dynamics simulation. These techniques provide a basis 

for the analysis of filament network structure through simulation. 

In this paper we discuss three techniques that expose structural characteristics: the Radial-

pair Distribution Function (RDF), Scaling analysis (Fractal dimension), and Percolation analysis. 

Properties which can be measured with these techniques include: network mesh size, filament 

packing structure, network connectivity, average cluster size, number of filaments per bundle, 

and space-filling dimensionality. 

 

 
 

Figure 1. A molecular dynamics simulation snapshot of a system of isolated bundles (a), a 

branching network (b) and a non-branching network (c). All have a minimum filament spacing 

of 𝑟𝑚𝑖𝑛 = 20 nm. Simulation a and b have a persistence length of 𝐿𝑃 = 3.34 µm, while c has a 

persistence length of 𝐿𝑃 = 33.4 µm. Filaments in a are 200 nm long, while b and c are 1 µm 

long. 

METHODS 

Radial-pair distribution function 

 

The Radial-pair Distribution Function (RDF) is a staple analytical technique [13] in 

Molecular Dynamics that describes the mass-density at various length scales as a radially 

symmetric probability density function. Applied to a simulated network, this is useful for 

identifying filament packing structure (i.e. filament arrangement within a bundle), bundle 

thickness, and network mesh size.  

The RDF, G(r), is calculated as a summation over every bead k for N beads in volume V, 

with bin size dr and n(r) beads in the spherical shell of width dr and radius r centered at k: 
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A few additional cautions are important when applying this to a simulated network. The 

bead-bead spacing along a filament is a highly ordered structure that would leave an artifact in 

the RDF. To eliminate this, spline interpolation can be used to the extent that the interpolated 

bead-bead spacing is equal the spatial resolution of the RDF. In the calculation of g(r) for some 

bead k, beads on the same filament as k can be excluded from the g(r) to remove the signature of 

a filament's average contour from the final RDF. This provides a clearer representation of the 
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network structure. The spatial periodicity of the system must also be accounted for when 

determining the distance between beads. The nearest of the nearest-neighbor images must be 

used. 

Computational cost for these calculations scales with 𝑁2, and spline interpolation effectively 

increases N significantly, further increasing cost. To improve efficiency, GPU parallel processing 

is suggested to decrease computation time.  

In Figure 2 a set of three example RDFs are shown representing different structures. The 2D 

hexagonal filament packing structure is easy to identify by the ratios of the peak values: 20, 35, 

40, and 53 nm (20, 20√3, 20 ⋅ 2 , 20√7, 20 ⋅ 4). The magenta RDF drops below 1 at 190 nm, 

representing a void space in which there is a lack of mass at that range (see diagram of Figure 2). 

In contrast, the cyan and blue RDFs approach 1 smoothly, representing a connected network of 

filaments. The relative weakness and lack of hexagonal peaks in the blue RDF indicates less 

filaments per bundle.  

 

 
 

Figure 2. Selected RDFs (a) calculated for the three simulated network structures in Figure 1 

with logarithmic axes. The adjacent diagram (b) demonstrates the void space where the magenta 

RDF drops below 1; this represents a lack of mass at this range characteristic of isolated bundles 

of filaments. Peak values are marked for the magenta and cyan RDFs. 

 

 

Scaling analysis 

 

The fractal dimension (or 'mass-density power-law scaling') of a structure represents the way 

mass scales with space. Common simple geometries have fractal dimension values which serve 

as a good reference when looking at more complex structures. For example, a straight line (i.e. a 

single filament) in 3D has a fractal dimension of 𝐷 = 1. A plane, 𝐷 = 2 (i.e. a thin sheet of 

material) and a volume, 𝐷 = 3 (i.e. a uniform solid) have similarly simple values. More complex 

structures often have intermediate values that can be related to these simple geometries. The 

Koch Curve [14], commonly depicted as a line in 2D with fractally dense curves, has a fractal 

dimension slightly more than that of a line in 2D (𝐷 ≈ 1.262), since it fills space more 

completely. The freely jointed chain, a simple model for flexible polymers, is a random walk in 

3D with a fractal dimension value intermediate between a volume and line (𝐷 = 2). 

Finite geometries (non-fractal) can be analyzed in the same way as fractal structures, though 

the range of consistent scaling is limited. Instead, the average mass-density at different size 

scales will fit a power-law trend when scaling is consistent. This can be applied to our coarse-

grained simulation results and one formalism to quantify this is: 
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for average mass L at radius r from any bead. This is closely related to the RDF G(r), as the 

average mass in a space of radius r around a bead is:  
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When this technique is applied to a filament network, in the very short range (𝑟 <  𝑟𝑚𝑖𝑛) the 

geometry of individual filaments is dominant (𝐷 1) and in very long range the space is filled 

volumetrically (𝐷 3). In the intermediate range, the scaling parameter will transition to an 

intermediate value that may be consistent over a decade. The locations of transition points 

representing the limits to the length-scale range of a structure can be identified by finding 

crossover points (i.e. points where D transitions from one value to another). 

 

 
 

Figure 3.  Mass-scaling of a branching network structure (a) and isolated bundles (b) with 

different transition points and scaling parameters. Diagrams representing the calculated values in 

each structure are shown (c-d). 

 

In Figure 3a, a power-law fit of the mass-scaling for the branching network in Figure 1b is 

shown with a scaling parameter of 1.3 in the intermediate region. The transition point where two 

power law fits meet represents the mesh size here. The system of isolated bundles in Figure 1a 

similarly has a transition point in its mass-scaling (Figure 3b) representing the size of a bundle. 

Diagrams representing the meaning of these values are shown adjacent in Figure 3 c-d. 

Percolation analysis 

 

An analysis of the connectedness of a simulated network is particularly useful for time-

resolved studies of the evolution of the structure, and allows verification that the structure has 
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evolved to an equilibrium or quasi-equilibrium state. A structure that appears well developed by 

its RDF may continue to evolve subtly by slowly forming a more connected structure while 

maintaining its general morphology.  

In the evolution of a typical network structure, three distinct time-regimes are identifiable: 

rapid network formation, slow bundle thickening, and the equilibrated state. In the initial stage, 

rapid network formation, filaments quickly form 'clusters' of interconnected (directly or 

indirectly) filaments. The average number of filaments in a cluster grows as separate clusters 

join, eventually forming a percolated structure with nearly all filaments connected to every other 

filament by cluster-cluster aggregation [2,15]. Once the network structure is formed, loose ends 

of filaments continue to fluctuate, forming new connections as they are attracted towards other 

bundles. At the limit of this process, a quasi-equilibrium structure is formed which persists. This 

is seen experimentally with F-actin gels, which form a pseudo-stable gel rapidly [2]. 

To perform the percolation analysis, two parameters are calculated: the average cluster size 

and the average connections per filament (connectivity). In the first phase of this calculation, the 

inter-filament “cross-links” are identified by the proximity of close filaments. If any two beads 

on different filaments are within slightly more than the bond distance (𝑟𝑚𝑖𝑛 + 1 𝑛𝑚), a bond is 

recorded in a symmetric logic table T. If filament number A is sufficiently proximate (cross-

linked) to B, then 𝑇𝐴,𝐵 is set to 1, otherwise it is 0. The logic table formed by repeating this check 

for every filament pair is an 𝑁 × 𝑁 symmetric adjacency matrix with all cells along the diagonal 

set to 1. The upper triangular part is used to prevent redundancy. By taking advantage of the 

MDAnalysis Python toolbox, this table can be formed efficiently. 

 

      
 

Figure 4. An example network graph and corresponding adjacency matrix. The network has an 

average connectivity value of 0.609 and average cluster size of 0.625. 

 

As an example of this process, consider the example network graph in Figure 4 representing 

eight filaments with “cross-links” between them. The logic table representing this network graph 

is shown adjacent. Each diagonal cell uniquely represents a node/filament, while off-diagonal 

cells represent connections between nodes/filaments.  

 

In the second phase of calculation, a recursive algorithm parses this logic table incrementing 

a counter for each value. The recursive algorithm is simply stated for any cell 𝑇𝑖,𝑗:  

 If 𝑖 = 𝑗, increment the cluster size counter 

 If 𝑖 ≠ 𝑗, increment the connectivity counter 

 Set 𝑇𝑖,𝑗 = 0 

 For each cell 𝑇𝑖′,𝑗′ = 1 such that 𝑖′ = 𝑖 or 𝑗′ = 𝑗 (on the same row or column), recurse 

from that cell. 



The recursion is initialized from each cell on the diagonal, each time with the original copy 

of T. After recursion collapses, the cluster size and connectivity counters are normalized by the 

maximum value of cluster size, 𝑁2. This recursion thus follows the connections between nodes, 

going deeper into the network graph with each depth of recursion until a full cluster is parsed. 

Since each diagonal cell parsed represents a filament connected (either directly or indirectly) to 

the cluster which includes the initialized node, by counting these diagonal cells the size of the 

cluster can be determined. Similarly, counting off-diagonal cells gives a measure of how well 

connected the cluster is. A more dense adjacency matrix will then have a higher connectivity 

value, while a more sparse adjacency matrix will have a lower connectivity value. A minimally 

connected full network (ring topology) would have a normalized connectivity value of 1, thus 

values greater than 1 are easily possible. 

An example of this recursive algorithm is represented in Figure 5 for the network shown in 

Figure 4. Recursion is initialized at cell 𝑇5,5 (representing node 5) as an example. At the top 

depth of recursion (red), 𝑇5,5 is set to 0, and the cluster size counter is incremented once. The 

four nonzero cells in the row/column begin the next depth of the recursion (shown as dark blue). 

Cells in the same rows/columns are again parsed (light blue) looking nonzero values for the next 

depth of recursion etc. At this depth, the cluster size counter is incremented twice, while the 

connectivity counter is incremented four times. In this case, recursion reaches a depth of 4. The 

remaining nonzero values represent nodes 7 and 8, which are unconnected to the larger cluster; 

they contribute nothing in this case. 

The computational cost of this procedure scales poorly, with 𝑁3. This can be improved by 

under-sampling the number of diagonal cells from which it is initialized. 

 

       
 

Figure 5. Example steps in computing connectivity and cluster size for the network in Figure 4 

initialized from node 5. Recursion depth is represented as different colors (increasing from left to 

right). Dark colored cells represent points of recursion, while light colors represent cells parsed 

for the next depth of recursion. Parsed 1’s continue the recursion procedure. Same-depth 

recursion is shown in parallel here for conciseness, while a series programming approach is 

necessary to prevent double-counting cells.  

CONCLUSIONS 

 

We have presented a toolbox of techniques for the analysis of simulated semi-flexible 

polymer networks. The RDF, Scaling analysis, and Percolation analysis allow quantitative 

characterization of important structural properties. It is expected that interest in applications of 

tunable synthetic filaments will require a computational model and metrics for comparison. This 

set of techniques allows quantitative measurement of values useful in defining network structure. 



These methods serve as a basic toolbox for reporting structural properties in future filament 

network simulations.   
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