All posts by Linda Hirst

Soft particle trapping in a dual-beam optical trap

Stability and instability for low refractive-index-contrast particle trapping in a dual-beam optical trap

Alison Huff, Charles N. Melton, Linda S. Hirst, and Jay E. Sharping

Biomedical optics express, 6 (10), 3812-3819 (2015)

A dual-beam optical trap is used to trap and manipulate dielectric particles. When the refractive index of these particles is comparable to that of the surrounding medium, equilibrium trapping locations within the system shift from stable to unstable depending on fiber separation and particle size. This is due to to the relationship between gradient and scattering forces. We experimentally and computationally study the transitions between stable and unstable trapping of poly(methyl methacrylate) beads for a range of parameters relevant to experimental setups involving giant unilamellar vesicles. We present stability maps for various fiber separations and particle sizes, and find that careful attention to particle size and configuration is necessary to obtain reproducible quantitative results for soft matter stretching experiments.

Read the full paper here

Bifurcation plots showing the axial stability locations vs. particle radius for three different traps with fiber separations of (a) 45 μm, (b) 92.9 μm, and (c) 129.1 μm. The red dots represent the simulated stable trapping location, and the symbols represent experimentally observed stably trapped particles. The trap center is located at z=0. Trapping locations are shown schematically within (c). The error bars were determined empirically through measurements of the inner and outer edges of both the fiber and beads.
Bifurcation plots showing the axial stability locations vs. particle radius for three different traps with fiber separations of (a) 45 μm, (b) 92.9 μm, and (c) 129.1 μm. The red dots represent the simulated stable trapping location, and the symbols represent experimentally observed stably trapped particles. The trap center is located at z=0. Trapping locations are shown schematically within (c). The error bars were determined empirically through measurements of the inner and outer edges of both the fiber and beads.

Kyle Kabasaras, CAMP summer student, presents research at UC Merced Symposium

This summer Kyle Kabasaras presented his original research project at the UC Merced undergrad research symposium.

Investigating quantum dot assembly in a cholesteric liquid crystal

An ongoing goal in condensed matter physics is directly controlling the self-assembly of quantum dots (QDs) into specific structures while maintaining their original electronic and optical properties. One method of controlling the self-assembly of QDs is to disperse them within a liquid crystal (LC) medium and apply a variety of thermal stimulations. Recently, our lab developed a method of creating spherical, vesicle-shaped QDs within a nematic LCVesicle formation depends on the QD concentration in the LC as well as the LC’s intermolecular dispersion forces and thermal properties. In this project, we investigate the dispersion of CdSe/ZnS (core/shell) QDs in a cholesteric LC (CLC) medium and predict the QD aggregations to cluster near the LC defects. By varying parameters such as QD concentration and temperature, we exploit the CLC’s sensitive optical and thermal propertiesTo observe these effects, we apply spectrophotometry, polarized optical microscopy, and fluorescence microscopy. These techniques highlight the aggregation of QDs within the host CLC and identify how LC phase transitions determine where QDaggregates form. This work illustrates the possibility of new LC-based QD devices, and we will continue by exploring the lasing potential of our sample.

camplogo1
CAMP is a National Science Foundation funded project to promote undergraduate research participation.

 

 

 

Makiko Quint wins faculty mentor fellowship

Congratulations to graduate student Makiko Quint! Makiko was awarded the UC Merced faculty mentor fellowship for 2015/2016. Her research project, in collaboration with the Ghosh group at UC Merced focuses on liquid crystal nanoparticle composites.

Read her recent paper in optical express here

The award assists recipients in acquiring and developing advanced research skills under faculty mentorship and is aimed at increasing the number of students who complete their Ph.D. degree and successfully acquire a faculty appointment.

The fellowship provides one year’s funding for Makiko’s graduate work – congratulations!

 

A plasmon induced liquid crystal device

“All optical switching of nematic liquid crystal films driven by localized surface plasmons” M.T. Quint, S. Delgado, Z.S. Nuno, L.S. Hirst and S. Ghosh, OPTICS EXPRESS, 23,5, 6888 (2015) Link

We have demonstrated an all-optical technique for reversible in-plane and out-of-plane switching of nematic liquid crystal molecules in few micron thick films. Our method leverages the highly localized electric fields (“hot spots”) and plasmonic heating that are generated in the near-field region of densely packed gold nanoparticle layers optically excited on-resonance with the localized surface plasmon absorption. Using polarized microscopy and transmission measurements, we observe this switching from homeotropic to planar over a temperature range starting at room temperature to just below the isotropic transition, and at on-resonance excitation intensity less than 0.03 W/cm2. In addition, we controllably vary the in-plane directionality of the liquid crystal molecules in the planar state by altering the linear polarization of the incident excitation. Using discrete dipole simulations and control measurements, we establish spectral selectivity in this new and interesting perspective for photonic application using low light power.

Quantum dot micro-shells

Self-assembled nanoparticle micro-shells templated by liquid crystal sorting”A. R. Rodarte, B.H. Cao, H. Panesar, R.J. Pandolfi, M. Quint, L. Edwards, S. Ghosh, J.E. Hein and L.S. Hirst, Soft Matter, 10.1039/C4SM02326A (2015) Link

A current goal in nanotechnology focuses on the assembly of different nanoparticle types into 3D organized structures. In this paper we report the use of a liquid crystal host phase in a new process for the generation of micron-scale vesicle-like nanoparticle shells stabilized by ligand–ligand interactions. The constructs formed consist of a robust, thin spherical layer, composed of closely packed quantum dots (QDs) and stabilized by local crystallization of the mesogenic ligands. Ligand structure can be tuned to vary QD packing within the shell and made UV cross-linkable to allow for intact shell extraction into toluene. The assembly method we describe could be extended to other nanoparticle types (metallic, magnetic etc.), where hollow shell formation is controlled by thermally sorting mesogen-functionalized nanoparticles in a liquid crystalline host material at the isotropic to nematic transition. This process represents a versatile method for making non-planar 3D nano-assemblies.

Congratulations Dr Pandolfi!

Congratulations go to Ron Pandolfi, the latest PhD graduate from the Hirst group. Ron’s PhD defense was on Monday Dec 8th, where he presented his thesis on “Self-assembly and Design of Tunable Soft Materials”

During his time in the lab Ron’s work has included molecular dynamics simulations of semi-flexible polymers and x-ray characterization of different soft systems.

Ron was recently hired at the Advanced Light Source, Lawrence Berkeley National Lab in Berkeley, CA where he’ll be working with soft matter x-ray team.

 

 

 

Soft Matter Gallery

 

 

Magnetic field induced quantum dot brightening

Magnetic field induced quantum dot brightening in liquid crystal synergized magnetic and semiconducting nanoparticle composite assemblies” 
Jose Jussi Amaral,   Jacky Wan,   Andrea L. Rodarte,  Christopher Ferri,   Makiko T. Quint,  Ronald J. Pandolfi, Michael Scheibner,  Linda S. Hirst and   Sayantani Ghosh, Soft Matter (2014)

The design and development of multifunctional composite materials from artificial nano-constituents is one of the most compelling current research areas. This drive to improve over nature and produce ‘meta-materials’ has met with some success, but results have proven limited with regards to both the demonstration of synergistic functionalities and in the ability to manipulate the material properties post-fabrication and in situ. Here, magnetic nanoparticles (MNPs) and semiconducting quantum dots (QDs) are co-assembled in a nematic liquid crystalline (LC) matrix, forming composite structures in which the emission intensity of the quantum dots is systematically and reversibly controlled with a small applied magnetic field (<100 mT). This magnetic field-driven brightening, ranging between a two- to three-fold peak intensity increase, is a truly cooperative effect: the LC phase transition creates the co-assemblies, the clustering of the MNPs produces LC re-orientation at atypical low external field, and this re-arrangement produces compaction of the clusters, resulting in the detection of increased QD emission. These results demonstrate a synergistic, reversible, and an all-optical process to detect magnetic fields and additionally, as the clusters are self-assembled in a fluid medium, they offer the possibility for these sensors to be used in broad ranging fluid-based applications.