All posts by Linda Hirst

New NSF grant – mixing in active matter

The Hirst Lab has been awarded a new three-year NSF grant along with collaborator UC Merced’s Kevin Mitchell.

The grant, combining experiment and theory is titled “Self-mixing Active Fluids”

Abstract

Active matter is one of the most exciting frontiers in soft matter science. Unlike typical fluids, active fluids are not in equilibrium. Instead, they consume energy locally, translating this energy into internal flows and spontaneous mixing. In this project, mass transport and chaotic mixing in active fluids will be investigated using a fluid consisting of microtubules and kinesin, biological molecules found in the cell. Densely packed microtubules slide antiparallel to each other at a controlled rate due to coupled kinesin molecular motors. An exciting outcome of this work could be the development of a new class of self-mixing active solvents. Such a solvent could revolutionize our understanding of the kinetics of mass transport and chemical reactions. The present proposal concerns much larger length scales than that of standard solvents and will thus serve as an experimental model for these new ideas, helping to establish fundamental laws that govern the behavior of active matter. Since the contents of biological cells are highly complex active materials, far from equilibrium, this work is expected to yield new insights into the role of active materials in biology. A proposed Telluride workshop on transport in active fluids will help to bring together the relatively disparate fields of liquid crystals, biological fluids and nonlinear dynamics. This work will have a significant educational impact at UC Merced, a new university in one of California’s most socio-economically disadvantaged areas. This research will provide the basis for several undergraduate theses and the PIs will use insights from this work to introduce cutting edge materials to their graduate and undergraduate teaching.

This project focuses on transport and mixing in a biologically inspired extensile active nematic. Densely packed microtubules slide antiparallel to each other at a controlled rate due to kinesin molecular motors and the resulting chaotic advection will be measured on different length scales, using the experimental tools of particle tracking, particle image velocimetry, and fluorescence imaging of labeled tracers. Experimental data will be theoretically interpreted using the tools of nonlinear and topological dynamics, thereby merging the fields of chaotic advection and liquid crystals in a unique collaborative effort. Topological entropy will play a central, unifying role in this study. Topological entropy is well known in studies of chaotic advection, but has been thus far overlooked in studies of active nematics. Specific aims are to: 1) use bead tracking and velocity reconstruction, together with tools from nonlinear dynamics, to measure the topological entropy of active nematic mixing; 2) measure the effective diffusivity, enhanced by chaotic advection, of the active nematic on the macroscale; and 3) investigate correlations between molecular-scale dynamics, mesoscale mixing, and macroscale diffusion by varying system parameters.

Congratulations Dr Melton!

Nathan Melton, our most recent graduate walked at UC Merced commencement this month. Nathan’s recent work, focused on topological defects in liquid crystals with a new paper just out last month in the journal Nanomaterials.

“Phase-transition-driven nanoparticle assembly in liquid crystal droplets” Charles N. Melton, Sheida T. Riahinasab, Amir Keshavarz, Benjamin J. Stokes and Linda S. Hirst, Nanomaterials, 8, 146 (2018). Link

Dr Melton and Dr Hirst

Nathan has already started work as a postdoctoral scientist at Lawrence Berkeley National Lab at the Advanced Light Source!

Sheida Riahinasab wins prestigious Grad Division fellowship

Congratulations Sheida on receiving the UC Merced graduate Opportunity fellowship! Sheida is working on liquid crystal nano-composites and has developed a new process to create three-dimensional structures. This fellowship will fund Sheida’s research for academic year 2017/18.

You can read about some of her recent research here

Materials Research Express 2016

SPIE newsroom 2017

SPIE proceedings 2017

 

 

 

Active Matter in Biology:Nature News and Views

Recently Prof Hirst authored a News and Views in Nature focussed on two exciting articles about the cell epithelium as active matter.

“Evidence has been found that a biological tissue might behave like a liquid crystal. Even more remarkably, topological defects in this liquid-crystal system seem to influence cell behaviour. A materials physicist and a biologist discuss what the findings mean for researchers in their fields”.

Read the full article here

Biological physics: Liquid crystals in living tissue

 

Congratulations Joe Lopes – CREST fellow 2017

Congratulations go to Joe, who was selected to receive funding for the Spring  and Fall semesters as a CREST fellow.

1461375681_Joepic

The CREST center (Center for cellular and biomolecular machines) is funded by the National Science Foundation and you can read more about their work and opportunities here.

Joe is working on kinesin – based  microtubule transport and active matter.

3122217_orig
Microtubules gliding on kinesin motors

 

 

 

 

Studying microtubule spools

Understanding the role of transport velocity in biomotor-powered microtubule spool assembly

Amanda J. Tan, Dail E. Chapman, Linda S. Hirst and Jing Xu

In this new paper we examined the sensitivity of microtubule spools to transport velocity.
Perhaps surprisingly, we determined that the steady-state
number and size of spools remained constant over a seven-fold
range of velocities. Our data on the kinetics of spool assembly
further suggest that the main mechanisms underlying spool growth
vary during assembly.
Read the paper in RSC Advances here

Amanda Tan – winner 2016 faculty mentor fellowship

Congratulations to physics graduate student Amanda Tan for winning a UC Merced “faculty mentor” fellowship.  This prestigious fellowship is awarded to prepare future faculty and provides a year’s funding plus a travel stipend.

Amanda’s research project focuses on active biological materials, in particular microtubules and molecular motors. She is collaborating with the Xu lab at UC Merced and will have her first paper with the group out soon.

ezgif.com-video-to-gif

The award assists recipients in acquiring and developing advanced research skills under faculty mentorship and is aimed at increasing the number of students who complete their Ph.D. degree and successfully acquire a faculty appointment.

 

 

Using molecular motors to extract lipid tubules

A Simple Experimental Model to Investigate Force Range for Membrane Nanotube Formation

Chai Lor1, Joseph D. Lopes2, Michelle K. Mattson-Hoss3, Jing Xu2* and Linda S. Hirst2*
  • 1Biological Engineering and Small-scale Technologies Graduate Program, School of Engineering, University of California Merced, Merced, CA, USA
  • 2Physics Department, School of Natural Science, University of California Merced, Merced, CA, USA
  • 3Developmental and Cell Biology, School of Biological Sciences, University of California Irvine, Irvine, CA, USA

fmats-03-00006-g001The presence of membrane tubules in living cells is essential to many biological processes. In cells, one mechanism to form nanosized lipid tubules is via molecular motor induced bilayer extraction. In this paper, we describe a simple experimental model to investigate the forces required for lipid tube formation using kinesin motors anchored to 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) vesicles. Previous related studies have used molecular motors actively pulling on the membrane to extract a nanotube. Here, we invert the system geometry; molecular motors are used as static anchors linking DOPC vesicles to a two-dimensional microtubule network and an external flow is introduced to generate nanotubes facilitated by the drag force. We found that a drag force of ≈7 pN was sufficient for tubule extraction for vesicles ranging from 1 to 2 μm in radius. By our method, we found that the force generated by a single molecular motor was sufficient for membrane tubule extraction from a spherical lipid vesicle.

Congratulations Dr Lor!

Dr Chai Lor successfully defended his PhD thesis in the BEST (Bioengineering and small scale technologies) program on October 26th. Chai was a bioengineering undergraduate at UC Merced and a member of the first graduating class.

“Phase Behavior and Nanotube Formation in Lipid Membranes”

Biological cells are protected by a complex barrier called the lipid membrane. The lipid membrane is a soft material structure consisting of many lipid molecules held together by hydrophobic forces in an aqueous solution. Two simple experimental models were employed to investigate the role of specific lipid molecules in biological membranes. The first model investigated the phase behavior of the binary lipid mixture, 1-dipalmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine (DHA-PE) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), using small-angle x-ray scattering (SAXS) and wide-angle x-ray scattering (WAXS). Our results shows that DHA-PE induces phase separation into a DHA rich liquid crystalline (Lα) phase and a DHA poor gel (Lβ’) phase at overall DHA-PE concentrations as low as 0.1mol%. In addition, we find that the structure of the Lβ’ phase, from which the DHA-PE molecules are largely excluded, is modified in the phase-separated state at low DHA-PE concentrations, with a decrease in bilayer thickness of 1.34nm for 0.1mol% at room temperature compared to pure DPPC bilayers. The second model investigated the formation of lipid nanotubes using an anchor system consisting of lipids, kinesin molecular motors, and microtubules in a flow cell. Lipid tubulation was conducted on two different membranes, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and DPPC. Lipid nanotubes were pulled from anchored giant unilamellar vesicles (GUVs) by drag force generated from the flow inside the channel. The results showed that DPPC membranes cannot generate lipid nanotubes while DOPC can, which was expected. We find that a drag force of approximately ≈7.9 pN is sufficient for tubule extraction and that it only requires 1-2 kinesin motor proteins for anchoring the GUV.

“Low concentrations of docosahexanoic acid significantly modify membrane structure and phase behavior”
C. Lor and L.S. Hirst, MEMBRANES, 5(4), 857-874 Link (2015)