Tag Archives: soft matter

Amanda Tan – winner 2016 faculty mentor fellowship

Congratulations to physics graduate student Amanda Tan for winning a UC Merced “faculty mentor” fellowship.  This prestigious fellowship is awarded to prepare future faculty and provides a year’s funding plus a travel stipend.

Amanda’s research project focuses on active biological materials, in particular microtubules and molecular motors. She is collaborating with the Xu lab at UC Merced and will have her first paper with the group out soon.

ezgif.com-video-to-gif

The award assists recipients in acquiring and developing advanced research skills under faculty mentorship and is aimed at increasing the number of students who complete their Ph.D. degree and successfully acquire a faculty appointment.

 

 

Congratulations Dr Lor!

Dr Chai Lor successfully defended his PhD thesis in the BEST (Bioengineering and small scale technologies) program on October 26th. Chai was a bioengineering undergraduate at UC Merced and a member of the first graduating class.

“Phase Behavior and Nanotube Formation in Lipid Membranes”

Biological cells are protected by a complex barrier called the lipid membrane. The lipid membrane is a soft material structure consisting of many lipid molecules held together by hydrophobic forces in an aqueous solution. Two simple experimental models were employed to investigate the role of specific lipid molecules in biological membranes. The first model investigated the phase behavior of the binary lipid mixture, 1-dipalmitoyl-2-docosahexaenoyl-sn-glycero-3-phosphoethanolamine (DHA-PE) and 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), using small-angle x-ray scattering (SAXS) and wide-angle x-ray scattering (WAXS). Our results shows that DHA-PE induces phase separation into a DHA rich liquid crystalline (Lα) phase and a DHA poor gel (Lβ’) phase at overall DHA-PE concentrations as low as 0.1mol%. In addition, we find that the structure of the Lβ’ phase, from which the DHA-PE molecules are largely excluded, is modified in the phase-separated state at low DHA-PE concentrations, with a decrease in bilayer thickness of 1.34nm for 0.1mol% at room temperature compared to pure DPPC bilayers. The second model investigated the formation of lipid nanotubes using an anchor system consisting of lipids, kinesin molecular motors, and microtubules in a flow cell. Lipid tubulation was conducted on two different membranes, 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and DPPC. Lipid nanotubes were pulled from anchored giant unilamellar vesicles (GUVs) by drag force generated from the flow inside the channel. The results showed that DPPC membranes cannot generate lipid nanotubes while DOPC can, which was expected. We find that a drag force of approximately ≈7.9 pN is sufficient for tubule extraction and that it only requires 1-2 kinesin motor proteins for anchoring the GUV.

“Low concentrations of docosahexanoic acid significantly modify membrane structure and phase behavior”
C. Lor and L.S. Hirst, MEMBRANES, 5(4), 857-874 Link (2015)

 

Kyle Kabasaras, CAMP summer student, presents research at UC Merced Symposium

This summer Kyle Kabasaras presented his original research project at the UC Merced undergrad research symposium.

Investigating quantum dot assembly in a cholesteric liquid crystal

An ongoing goal in condensed matter physics is directly controlling the self-assembly of quantum dots (QDs) into specific structures while maintaining their original electronic and optical properties. One method of controlling the self-assembly of QDs is to disperse them within a liquid crystal (LC) medium and apply a variety of thermal stimulations. Recently, our lab developed a method of creating spherical, vesicle-shaped QDs within a nematic LCVesicle formation depends on the QD concentration in the LC as well as the LC’s intermolecular dispersion forces and thermal properties. In this project, we investigate the dispersion of CdSe/ZnS (core/shell) QDs in a cholesteric LC (CLC) medium and predict the QD aggregations to cluster near the LC defects. By varying parameters such as QD concentration and temperature, we exploit the CLC’s sensitive optical and thermal propertiesTo observe these effects, we apply spectrophotometry, polarized optical microscopy, and fluorescence microscopy. These techniques highlight the aggregation of QDs within the host CLC and identify how LC phase transitions determine where QDaggregates form. This work illustrates the possibility of new LC-based QD devices, and we will continue by exploring the lasing potential of our sample.

camplogo1
CAMP is a National Science Foundation funded project to promote undergraduate research participation.

 

 

 

Soft Matter Gallery